Detecting event-related time-dependent directional couplings
نویسندگان
چکیده
Nonlinear interdependencemeasures can be used to detect directional couplings between stationary dynamical systems from a pair of signals measured from them. For many dynamics, however, intermittent directional couplings arise in causal relation to distinct events on timescales that are often too short to be resolved by nonlinear interdependence measures. On the other hand, in many experimental settings signals are measured for multiple instances of such events. We demonstrate how thesemultiple realizations can be exploited to reliably detect event-related time-dependent directional couplings. For this purpose, we propose the general concept of time-resolved causal statistics derived from embeddings across multiple realizations of time-dependent dynamics. Surrogates constructed by permuting the order of realizations can be used to test specified null hypotheses. We adapt a conventional nonlinear interdependence measure to serve as a timeresolved causal statistic and apply it to exemplary coupled Lorenz dynamics. This approach allows detecting event-related time-dependent directional couplings based on only a few tens of realizations. Changes of the coupling direction can be detected within one oscillation of the dynamics. Beyond this particular application, any metric bivariate or univariate measure can be adapted to serve as time-resolved causal statistics to characterize various aspects of event-related time-dependent dynamics. A detection of directional couplings between two distinct dynamical systems X and Y from the analysis of pairs of signals measured from them is key to an understanding of many dynamics in nature. To detect directional couplings phase dynamics estimates [1] as well as estimates based New Journal of Physics 8 (2006) 6 PII: S1367-2630(06)10517-
منابع مشابه
Evaluation of a BIBD Based Directional MAC Protocol for Wireless Ad Hoc Networks
The use of directional antennas in wireless ad hoc networks can significantly improve global performance due to a high spatial channel reuse. Nevertheless, its introduction poses new location dependent problems related to the MAC protocol. In this paper, the Balanced Incomplete Block Design theory has been exploited to develop a new MAC protocol for wireless ad hoc networks using directional ant...
متن کاملRevealing Nonlinear Couplings between Oscillators from Time Series
Quantitative characterization of nonlinear directional couplings between stochastic oscillators from data is considered. We suggest coupling characteristics readily interpreted from a physical viewpoint and their estimators. An expression for a statistical significance level is derived analytically that allows reliable coupling detection from a relatively short time series. Performance of the t...
متن کاملReliable detection of directional couplings using rank statistics.
To detect directional couplings from time series various measures based on distances in reconstructed state spaces were introduced. These measures can, however, be biased by asymmetries in the dynamics' structure, noise color, or noise level, which are ubiquitous in experimental signals. Using theoretical reasoning and results from model systems we identify the various sources of bias and show ...
متن کاملThe detection of transient directional couplings based on phase synchronization
We extend recent approaches based on the concept of phase synchronization to enable the time-resolved investigation of directional relationships between coupled dynamical systems from short and transient noisy time series. For our approach, we consider an observed ensemble of a sufficiently large number of time series as multiple realizations of a process. We derive an index that quantifies the...
متن کاملMethods for Quantifying the Causal Structure of bivariate Time Series
In the study of complex systems one of the major concerns is the detection and characterization of causal interdependencies and couplings between different subsystems. The nature of such dependencies is typically not only nonlinear but also asymmetric and thus makes the use of symmetric and linear methods ineffective. Moreover, signals sampled from real world systems are noisy and short, posing...
متن کامل